Beyond MyD88 and TRIF Pathways in Toll-Like Receptor Signaling

نویسندگان

  • Vincent Piras
  • Kumar Selvarajoo
چکیده

The Toll-like receptors (TLRs), 13 types known to-date, are a major class of transmembrane proteins of the mammalian innate immune system (1). They are known to detect diverse pathogen-associated molecular patterns of microorganisms, and trigger specialized sets of signal transduction cascades that neutralize any danger posed to the host by the intruders. The major adaptors that bind to the intracellular domain of TLR to activate the proinflammatory response are the myeloid differentiation primary response (MyD) 88 and TIR-domain-containing adapterinducing interferon-β (TRIF). Together, MyD88 and TRIF lead to the expression of numerous cytokines, such as TNF-α, IL1β, IL-6, IP-10, IFN-γ, etc., through transcriptional factors NF-κβ, AP-1, and IRF-3 activation (Figure 1A). In a September 2013 issue of the journal Science, Hagar et al. (3) and Kayagaki et al. (4) reported a major discovery in the TLR4 based innate immune response. For the first time, both research groups demonstrated the ability of Gram-negative bacteria, through lipopolysaccharides (LPS), to trigger a novel proinflammatory response independent of the TLR4. Collectively, they showed that caspase-11, which plays a pivotal role in shaping inflammasome, is activated intracellularly without the need for TLR4. This finding is a key advancement in the TLR field after the discovery of MyD88 and TRIF over a decade ago (5, 6). So, is this the beginning of recognizing a MyD88/TRIF-independent response? To share our thoughts, here we summarize our previous work on high throughput LPS response in macrophages (2). We investigated the genome-wide response of LPS-stimulated murine macrophages in four experimental conditions [wildtype, MyD88 knock-out (KO), TRIF KO, and MyD88/TRIF Double KO (DKO)] at three time points (0, 1, and 4 h). Instead of the commonly used approach of discarding gene expressions below an arbitrarily chosen threshold-cutoff, which highly limits the spectrum of genes analyzed, we undertook a novel approach of analyzing the entire 22,690 ORFs from the Affymetrix-based microarray dataset. We do appreciate the fact that microarray or even the recently developed RNA-Seq datasets are prone to a large degree of error or biases, especially for the lowly expressed genes. However, our goal was not to specifically identify individual novel genes expressed in all four conditions. Instead, we examined the global collective behaviors of the LPS-induced innate immune response (7). We mainly adopted the statistical Pearson correlation analysis, which is widely used to observe global patterns in complex systems such as the weather (8), stock markets (9), and cosmology (10). In essence, when two samples containing high-dimensional (such as microarray) data are compared, the correlation analyses provide a measure of deviation from unity as a source of difference between the samples. In our case, the Pearson correlation coefficient shows the compressed (averaged) information of the genome-wide response. We developed a scheme to compare the correlation coefficients between (i) the same genotype at different times (e.g., wildtype 0 h vs. wildtype 1 h, called autocorrelation) and, (ii) the same time point with different genotypes (e.g., wildtype 1 h vs. MyD88 KO 1 h, called cross-correlation) (Figures 1B,C). From the correlation plots, we surprisingly observed that DKO auto-correlations were similar to single KOs on the temporal scale (Figure 1B). In short, this is an indication that LPS is able to invoke gradual intracellular response independent of the key adaptor molecules MyD88 and TRIF, as seen by the monotonic deviation of correlation coefficient from unity. Nevertheless, the cross-correlations showed that DKO response, compared with wildtype, is the least similar (Figure 1C). This result indicated that although DKO showed gene expression response to LPS, its effect is the least among the four genotypes. To confirm whether DKO induces genome response, we, subsequently, compared correlation coefficients of whole genome with an ensemble comprising of 157 well-known proinflammatory genes (Figures 1D,E). Notably, for the selected group of proinflammatory genes, the auto-correlation for DKO was almost unchanged with time, indicating their nullified response in DKO, consistent with other studies (11). Altogether, these results indicated the presence of unknown pathways, independent of MyD88 and TRIF, to activate novel gene expressions in DKO (Figure 1A, dotted line). Although we had pointed out a few biological processes not specifically related to immunity using the Gene Ontology database, we could not experimentally verify the specific DKO or TLR4-independent response of LPS at that time. Nevertheless, today, we are delighted of the recent findings of Hagar et al. and Kayagaki et al. Their work not only brings a fresh perspective to TLR4 research, but also indirectly supports the utility of using simple Pearson statistical analysis to uncover novel regulatory response from genome-wide expression dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPS-TLR4 Signaling to IRF-3/7 and NF-κB Involves the Toll Adapters TRAM and TRIF

Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF)-related adaptor molecule (TRAM) is the fourth TIR domain-containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-kappaB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to...

متن کامل

LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF

Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN(TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NFB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN/...

متن کامل

LPS-TLR4 Signaling to IRF-3/7 and NF- k B Involves the Toll Adapters TRAM and TRIF

Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN(TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NFB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN/...

متن کامل

Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea.

Toll-like receptors (TLRs) play an important role in recognition of microbial components and induction of innate immunity. The microbial components trigger the activation of two downstream signaling pathways of TLRs; MyD88- and/or TRIF-dependent pathways leading to activation of NF-kappaB. (-)-Epigallocatechin-3-gallate (EGCG), a flavonoid found in green tea, is known to inhibit NF-kappaB activ...

متن کامل

Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation.

Toll-like receptors (TLRs) recognize specific pathogen-associated molecular patterns and initiate innate immune responses through signaling pathways that depend on the adaptor proteins MyD88 (myeloid differentiation marker 88) or TRIF (TIR domain-containing adaptor protein-inducing interferon-β). TLR4, in particular, uses both adaptor proteins to activate the transcription factor nuclear factor...

متن کامل

Absence of TRAM restricts Toll-like receptor 4 signaling in vascular endothelial cells to the MyD88 pathway.

Mammalian cells respond to bacterial lipopolysaccharide (LPS) through a cognate receptor: Toll-like receptor 4 (TLR4). The signaling pathways, which link TLR4 to the proinflammatory transcription factor nuclear factor kappaB (NF-kappaB), occur through the intracellular docking proteins MyD88 and Trif. We hypothesize that unlike antigen-presenting cells, vascular endothelial cells (ECs) lack the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014